| Research Grants for PhD students from the China Scholarship Council | | |--|--| | Information Form (please read the guidelines carefully on the website www-csc.utt.fr) | | | Supervisor's name : VULUGA Giv | en names : Daniela | | Status (prof., assistant prof.,): | | | Dalumara Bianalumara Surfacea | Website address: | | Laboratory : Polymers, Biopolymers, Surfaces | Website address : https://www.pbs.cnrs.fr/en/home/ | | Institution : INSA Rouen Normandy | Website address : http://www.insa-rouen.fr/ | | Scientific competence of the supervisor: | | | Polymer and organic chemistry, Polymerisation in continous flow reactor, biobased self-healing coatings | | | | | | | | | | | | Two maior publications in the field proposed for the PhD : | | | J. B. Garrison, R. W. Hughes, B. S. Sumerlin, ACS Macro Lett. 2022, 11, 441; 10.1021/acsmacrolett.2c00091. | | | Marcus H. Reis, Frank A. Leibfarth, Louis M. Pitet, ACS Macro Lett. 2020, 9, 1, 123–133 | | | Website address of the personal page : | | | Supervisor's email: daniela.vuluɑa@insa-rouen.fr Description of the research work proposed for a PhD Topic # (see list): IV-10 | | | | | | Title: | | | | | | Subject : The main idea of the ePolymFlow project is based on the production of polymers by ferroelectro-catalysed atom transfer | | | radical polymerisation in a gentle and controlled manner from acrylate monomers derived from biomass in a conventional | | | cell and in continuous flow. By combining electrochemical activation (sustainable conditions) and flow chemistry
(residence time control, improved faradic yield), we plan to effectively control the formation of biobased polymers by | | | introducing a redox-active comonomer to give them different recycling options. | | | The methodological study we are planning will therefore be divided into three work packages (WP): | | | Ferroelectro-catalysed radical atom transfer polymerisation of methyl methacrylate Continuous flow transposition | | | Introduction of a single co-monomer for two possible types of degradation | | | | | | | | | | | | Kevwords : Acrylates, Electrosynthesis, ATRP, Iron, Flow chemistry, Biobased products, Degradation | | | ,,,, ,, ,, ,, ,, ,, ,, ,, , | | | Expected collaborations: | | | This thesis project is proposed as a joint supervision with Dr. Laëtitia CHAUSSET-BOISSARIE (CNRS Research
Scientist)at CARMeN Institute (UMR CNRS 6064, Université de Rouen Normandie) | | | | | | | | | Background required from the applicant : | | | The applicant must have a master's degree in organic or polymer chemistry. A good level of English or French is required. | | | | | | | | | Existence of a PDF file detailing the proposal ("yes" or "no"): | ves | | (see guidelines on the website www-csc.utt.fr) | |