Development, Characterization and Modeling of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC)

Thesis director: Prof. Pascal Briois
Tel: +33 3 84 58 37 01
E-mail: pascal.briois@utbm.fr

Thesis co-supervisor: Dr. Fei Gao
Tel: +33 3 84 58 38 01
E-mail: fei.gao@utbm.fr

Context:

The energy sector is a very active research domain today. Due to the global depletion of fossil resources, it seems inevitable to find alternative energy sources. Among the different possible technologies, fuel cells show a significant interest due to their energy efficiency and nature of clean energy production (hydrogen). Among the various types of fuel cells, this thesis is focused on the solid oxide fuel cells operating at intermediate temperatures (IT-SOFC) around 700 °C. The aim and interest of IT-SOFC technology is at lowering the solid oxide fuel cell operating temperature from 1000 °C to 700 °C without affecting the fuel cell performance.

Thesis Work:

The high operating temperature of solid oxide fuel cells generates a high thermal stress and corrosion rate in the fuel cell body (anode/electrolyte/cathode), which significantly reduces their lifespan and, therefore, their potential use in their current state. The proposed work in this thesis involves the development of a novel thin layer based single solid oxide fuel cell (IT-SOFC) anode support. The proposed method that constitutes all the fuel cell elements in very thin layers reduces the related electrolyte resistance and increases the active catalyst interface. At the same time, the PhD student will also need to develop a dynamic multiphysics IT-SOFC model in 1D or 2D based on the characteristics of the developed materials, in order to simulate various physical phenomena in the fuel cell (electrochemical losses, heat conduction, etc...). This IT-SOFC model will be used to improve and validate the IT-SOFC designs by predicting the single fuel cell behavior under different operating conditions during tests. The objectives of this thesis are:

- Development of a novel thin film IT-SOFC electrolyte (about 5 µm) and a cathode (approximately 10 µm) on a supporting anode material
- Characterization of the developed IT-solid oxide fuel cell in real operating conditions
- Multiphysics modeling in 1D or 2D of the developed IT-SOFC during operation

References:

[3]. C.Y. Ma, P. Briois, J. Böhlmark, F. Lapostolle, A. Billard, "La$_{0.3}$Sr$_{0.7}$O$_{3-δ}$ electrolyte for IT-SOFC application deposited by HPPMS/DC hybrid magnetron sputtering process", Ionics 14 (2008) 471-476

